
Execution Context in Anti-Malware Testing
David Harley BA CISSP FBCS CITP

ESET

About Author
David Harley BA CISSP FBCS CITP is Director of Malware Intelligence at ESET. He previously
worked for Imperial Cancer Research Fund as security analyst, and later managed the Threat
Assessment Centre for the UK’s National Health Service. His consultancy Small Blue-Green World
provides security and publishing services, and he is Chief Operations Officer of AVIEN. His books
include “Viruses Revealed”(Osborne) and “The AVIEN Malware Defense Guide for the
Enterprise”(Syngress), and he has contributed to many other books and publications on security,
programming, and education. His research interests include all aspects of malware, security
software testing, Macintosh security, and the psychosocial aspects of security.
Contact Details: c/o Research Group, ESET, 610 West Ash Street, Suite 1900, San Diego,
CA92101, USA, phone +1-619-204-6461, e-mail dharley@eset.com

Keywords
anti-malware testing, dynamic analysis, static analysis, on-demand, on-access, command-line,
multiscanner, sample validation, statistical anomaly, false positives

mailto:dharley@eset.com

Execution Context in Anti-Malware Testing

Abstract
Anti-malware testing methodology remains a contentious area because many testers are
insufficiently aware of the complexities of malware and anti-malware technology. This results in the
frequent publication of comparative test results that are misleading and often totally invalid
because they don't accurately reflect the detection capability of the products under test. Because
many tests are based purely on static testing, where products are tested by using them to scan
presumed infected objects passively, those products that use more proactive techniques such as
active heuristics, emulation and sandboxing are frequently disadvantaged in such tests, even
assuming that sample sets are correctly validated.
Recent examples of misleading published statistical data include the ranking of anti-malware
products according to reports returned by multi-scanner sample submission sites, even though the
better examples of such sites are clear that this is not an appropriate use of their services, and the
use of similar reports to generate other statistical data such as the assumed prevalence of specific
malware. These problems, especially when combined with other testing problem areas such as
accurate sample validation and classification, introduce major statistical anomalies.
In this paper, it is proposed to review the most common mainstream anti-malware detection
techniques (search strings and simple signatures, generic signatures, passive heuristics, active
heuristics and behaviour analysis) in the context of anti-malware testing for purposes of single
product testing, comparative detection testing, and generation of prevalence and global detection
data. Specifically, issues around static and dynamic testing will be examined. Issues with additional
impact, such as sample classification and false positives, will be considered - not only false
identification of innocent applications as malware, but also contentious classification issues such as
(1) the trapping of samples, especially corrupted or truncated honeypot and honeynet samples
intended maliciously but unable to pose a direct threat to target systems (2) use of such criteria as
packing and obfuscation status as a primary heuristic for the identification of malware.

Introduction

It’s common to think of product evaluation purely in terms of detection performance: after all,
detection and removal (or blocking before infection) are usually considered to be the most
important functionalities of an anti-malware package. However, in real life, effective evaluation can
and should include a far wider range of criteria. Indeed, corporate evaluation is sometimes based on
an assumption that there is comparatively little variation in overall detection rates between products,
and that detection, as assessed by testing, is of less importance than other factors (Lee & Harley,
2007a) such as:

• Ergonomics and usability

• Configurability

• Documentation

• Support

• Functional range

• Performance (speed of operation, impact on system resources, and so on)

However, the deciding factor is often cost, which may even be the only factor given serious
consideration, especially in a procurement process where knowledge of the technological issues is
not part of the procurement remit (Harley, Slade & Gattiker, 2001).

As a matter of fact, this realignment of priorities could be defended quite vigorously, given the
difficulties of detection performance evaluation in the current threat landscape, where 100%
detection of known and unknown malware has become virtually impossible, except by the
application of generic countermeasures often too draconian to be accommodated by organizations
and businesses attempting to live in an interconnected “Web 2.0” world. How has this situation
arisen?

Testing and Over-Abundance
Sheer sample glut has had a devastating impact on the 1980s/early ‘90s model of one signature to
each malicious program. When anti-malware labs are processing unique samples running into six
figures on a daily basis, it is no longer sensible or practicable to attempt to produce a unique
signature for each and every short-lived incarnation of a malicious program that flares briefly and
then is never seen again. This doesn’t, of course, mean that the base code changes so frequently:
rather that the use of packers and obfuscators to change the “wrapper” around the base code
changes the “appearance” of the program so that simple signatures are either invalidated, or can
only work in combination with other techniques such as de-obfuscation.

This doesn’t mean that there is no longer a use for traditional known-malware detection
(“signatures”), but that approach is incapable of approaching anything like the detection levels that
were expected in the 1990s, when malware was more specialized, individual malicious programs
and variants were much rarer, and distribution mechanisms were less effective. In the 21st century,
such offensive techniques as server-side polymorphism, where each instantiation of the basic code
is regularly replaced by a repacked version, are far less susceptible to the primarily static detection
techniques (including passive heuristics) that were largely successful back then. (The assumption

here is that 100% detection is, however desirable, not usually a realistic definition of success for an
anti-virus product.)

In fact, if we were to count each detection of a malicious program as a separate “signature”, we
would see a staggering increase compared to the daily detections released in the 1990s. However,
these are now generally consolidated into generic signatures, heuristic detections and so on, so this
escalated detection ability is far from obvious to the everyday computer user. What is obvious,
however, is that anti-malware software doesn’t meet the expectation of customers (and many
testers) that it will achieve close to 100% detection. Of course it never did, but, paradoxically, while
the technology has become infinitely more sophisticated and capable, scanners have declined in
effectiveness. However, we can’t realistically compare the number of detections to the absolute
totality of malware, because no-one (tester or vendor) has every malicious sample. We cannot
overstate the difficulties of compiling a test set that represents that totality with reasonable
statistical validity and a minimum of vendor bias (Harley, 2008).

The Execution Context Problem
Even if we assume that the “best” tests (Harley & Lee, 2007b) use a large enough (and correctly
validated) sample set to keep the margin for error acceptably small, there is widespread concern
among vendors and testers that a wide range of tests generate seriously misleading results because
the testers are not aware of the importance of execution context in detection performance evaluation
(AMTSO, 2009).

This issue reflects growing awareness that proactive technologies based on some form of dynamic
analysis of malicious code and incorporated into modern antimalware solutions require testing
methods that are better able to capture the detection capabilities of these approaches (Morgenstern
& Marx, 2007).

Because many tests are based purely on static testing, where products are tested by using them to
scan presumed infected objects passively, those products that use more proactive techniques are
frequently disadvantaged in such tests. (Note, however, that static testing is not strictly synonymous
with passive scanning, which is not normally thought of as allowing the execution of scanned code:
we will address this anomaly in the section below on Testing Methodologies.)

Our intention in the next section is, therefore, to clarify the terminology most commonly used in
this context in relation to the technology it describes. We will also highlight some specific problems
that arise when the issue of execution context is ignored.

Discussion
Evaluation strategies focused entirely on a product’s detection technology limit the practical value
of the evaluation, since the scope of a real-world implementation is dependent not only on the
inherent functionalities of a product, but other factors such as corporate infrastructure and the nature
of the systems to be protected.

Evaluation Based on Detection Performance
Even where detection performance is a (or the) major evaluation criterion, the prospective customer
(the tester’s audience) cannot be supplied with a full appreciation of a product’s capabilities unless
the evaluation process uses the results of a wide range of detection performance tests, irrespective
of whether they come from a single source or many sources. Even where the customer has a limited

and clearly-defined set of functional requirements, data relating to other functions may be
informative in the present and relevant to possible future developments.

Even within the context of detection-specific, testing-based evaluation, the evaluator should be
aware that testing is often highly specialized. For example:

• On-demand testing, using a tested scanner to check a set of samples passively, rather than by
opening and/or executing each scanned object.

• On-access testing, using the realtime functionality of the scanner to check for malicious
code when an object is opened or executed.

• Time-to-Update (TtU) testing, monitoring the time it takes for a company to produce a
signature for a specific threat. This approach to testing has declined, as testers have
acknowledged the difficulties of implementing it accurately in the current threatscape,
especially since most companies now make use of proactive detection technologies that
reduce the need for signatures. However, the practice survives in the misuse of multi-
scanner sites like VirusTotal and Jotti to monitor the perceived ability of one or a range of
products to detect a specific sample. This practice is, however, based on incorrect
assumptions about scanning technology that are explored further below.

• WildList or In-the-Wild (ItW) testing, based on the WildCore collection of replicative
malware maintained by the WildList Organization (http://www.wildlist.org). This type of
test is commonly used by organizations that award certification for detection performance,
such as ICSAlabs, West Coast Labs, and Virus Bulletin. The scope and currency of the
sample set is limited: it represents only a small subset of the totality of malware extant at
any one time (i.e. viruses), and samples in the test set will no longer be “fresh” by the time
they are used in testing. However, it has the advantage for the tester that it consists (or
should consist) of valid, pre-screened malware. In addition, it provides a “level playing
field” in that all mainstream vendors represented in the WildList Organization should have
equal access to WildCore, so the risk of geographical or other bias favouring some vendors
over others is reduced.

Unfortunately, the term “In-the-Wild” testing (or some variation on the term) is often used
without reference to its association with and use by the WildList Organization (Gordon,
1997). While it’s not unreasonable to use the term in a general sense according to a
definition like this – “... for a trojan to be considered "In the Wild", it must be found on the
computers of unsuspecting users, in the course of normal day-to-day operations.” (WildList,
2001), it’s often used misleadingly to refer to unvalidated samples drawn from honeypots
and honeynets, the testers mailbox (Harley, 2008) and so on. This is problematical, in that
some researchers believe that 30% or more of such samples are likely to prove to be
corrupted, and many vendors differentiate between such damaged samples and active or
“live” malware. Tests that don’t take this factor into account therefore favour samples that
don’t differentiate, but often neither the tester nor the tester’s audience is aware that a bias
has been introduced.

• Conceptually, testing signature detection is fairly easy, requiring only some valid samples of
known malware. Testing a product’s capacity for the detection of unknown malware is
another matter (Jacob, Filiol & Debar, 2008). Some testers do this by creating new malware
or by modifying known malware to create unknown variants. The anti-malware industry,
however, being notoriously averse to the unnecessary creation of malware, prefers to
advocate proactive testing, where a product is prevented from downloading updates for a

fixed period, then tested with samples that have been gathered during the time when updates
were frozen: this can serve as a fairly accurate indicator of how successful a product is at
detecting unknown malware (i.e. malware for which it has no malware-specific detection),
depending on implementation.

• Detection of a single class of malware, for example rootkits, spyware, even the EICAR test
file. You could regard WildList testing as a special case of this type of test, since the test set
consists at present entirely of replicative malware, though it normally includes a wide range
of sub-classes of such malware.

• Vulnerability detection, where a vulnerability in a scanned object is flagged, rather than the
presence of malicious code that exploits that vulnerability. This is a legitimate test target.
However, a review based on performance in such a test may be misleading if the
tester/reviewer, or his audience, is unaware that some products may not flag that
vulnerability if no exploit is present, but will detect even an unknown exploit of that
vulnerability. As with other test types addressed in this paper, the validity of the test is in
part dependent on the understanding of the tester of both the technology and the design
philosophy of the vendor. If the tester assumes that only one design philosophy is legitimate,
this is likely to introduce a bias in favour of products that conform with that assumption.

• Detection capability using “Out-of-the-box” configuration.

• Detection using the most paranoid settings (sometimes this is “Out-of-the-box”
configuration, but often this isn’t the case, since many vendors prioritise speed over
detection performance by default – whether this is appropriate is a discussion for another
time).

Single/Multi-Function Detection Testing versus Whole Product Evaluation
Why is it important to maintain these distinctions? Because understanding the distinctions helps us
to understand the differences between:

• Single-function detection testing (that is, testing a subset of a tested product’s detection
capabilities: for example, its ability to detect fake antimalware, or its ability to detect malware in the
course of a scheduled on-demand scan).

• Testing a product’s more general detection capabilities. It may be too much to expect one
test-based comparative review to address the full detection functionality of every product under test.
However, it’s not unreasonable to expect a test to give an accurate assessment of general detection
capabilities unless it’s made clear to the audience that the test is highly specific.

• Testing the whole product. An evaluation/procurement process is often based on shortening
an initial list by discarding those that don’t meet particular criteria. This may be perfectly
appropriate. However, it’s not uncommon for an unwary tester to assume that a product that doesn’t
work in the way he expects is not working as it should. In fact, it’s possible that the product will
meet the needs of his audience as well as (or better than) a more “conventional” product. For
example, the results of a scanner test based purely on static testing of static detection can penalize
products that make use of dynamic analysis such as some forms of behavior analysis. In order to
accommodate these complications, it’s necessary to understand that “detection” is a blanket term
that includes many approaches to scanning. In consequence, detection performance can only be
evaluated realistically by taking into account execution context.

Defining Execution Context
Execution context actually has two dimensions: one dimension maps to the execution status of the
security software under test, the other to the execution status of the possibly infected object.

The most common differentiation applied to the execution context of an anti-malware scanner is the
core differentiation between on-demand and on-access scanners or scanner components.

On-Demand versus On-Access
Mainstream anti-malware products have two main functional scanning modes, conventionally
categorized as on-demand and on-access (or real-time). The essential distinction between them is
that on-access scanning involves checking an object for infection or malicious content when it
accessed. On-demand scanners check individual files, folders, or mounted disks, or as specified by
the end user or system administrator. This may be literally “on demand”, or according to some form
of automated scheduling. Scheduling functionality may be built into the scanner itself, or the
scanner may be called by another program such as a shell script or a scheduling utility built into the
operating system.

On-access scanning does not invariably involve execution of programmatic content, and on-demand
scanning does not necessarily require a scanned object to be inactive (i.e. not executing). However,
sound testing practice requires that the tester be aware that on-demand scanning will not necessarily
make use of the full detection capability of the scanning software. Depending on product, platform
and other contextual parameters, the scanner may or may not be capable of a full dynamic analysis
of the suspect code, whether scanning on-demand or on-access.

Not all products have a command-line interface (CLI) nowadays: where a product does have a CLI,
it interposes an extra layer of complexity. The term command-line scanner usually suggests an on-
demand scanning module: after all, one of the uses for a CLI is to launch a scheduled scan.
However, depending on platform and context, it’s not impossible or unknown for a real-time
scanning module to be launched from a command-line prompt. For testing purposes, the same
caveats apply to CLI on-demand scanners: the tester should not assume that the scanner will be able
to execute a full dynamic analysis of the scanned object.

Execution context is, clearly, at least partly responsible for defining a program’s execution status.

Execution Status
Execution status of the (possibly) infected object may include a number of possible states:

• The object is unable to execute because of the operating environment in which it finds itself
(for instance, a Macintosh binary on a Windows PC)

• The object is unable to execute because it is prevented by other factors (behavior blocking
software, system resource constraints)

• The object is capable of execution but is not currently active.

• The object is currently executing normally

• The object is currently executing but is modifying its own behaviour in response to some
aspect of the execution context in which it finds itself. For instance, some malware behaves
differently if it detects that it’s running in a virtualized environment. This can happen in a
normal business environment, of course: virtualization is a commonly-used systems tool in
day-to-day office work, for instance in a multi-server context or in the context of emulating

an operating system (OS) on a system that doesn’t support the “real” OS. However, many
types of security software make use of some form of virtualization in order to carry out
some form of dynamic and/or behaviour analysis. Self-modifying malcode may behave in a
number of ways in these circumstances:

o It may simply terminate, or remain in memory but inactive

o It may continue to execute, but exhibit “innocent” behaviour

o It may attempt to make active use of any vulnerabilities in the virtualized
environment, for instance to effect some malicious action on the host machine.

Basic Detection Algorithms
While exhaustive discussion of detection technologies is beyond the scope of this document, it is
necessary at this point to define some basic approaches to detection as implemented in mainstream
antimalware, in order to avoid confusion and ambiguity.

(Near-)Exact Identification
Exact identification has been defined as “Recognition of a virus when every section of the non-
modifiable parts of the virus body is uniquely identified” or as calculating “a checksum of all
constant bits of the virus body” (Szor, 2005), while near-exact identification checksums a single
range of constant bytes (Szor, 2005).

Signature
Exact and near-exact identification have become inextricably confused with the much-misused term
signature: however, the term signature is used (when unavoidable) in this document to refer to any
detection algorithm that implements known-malware detection. A generic signature is a signature
that detects more than one member of a malware family. Sometimes a generic signature will detect
a new member of such a family, so the line of demarcation between a generic signature and a
heuristic detection can be somewhat fuzzy.

Playing First: Proactive Analysis
Heuristic analysis uses a variety of approaches to detecting new malware proactively, as well as
new variants that closely resemble known variants. Static or passive heuristics use code inspection
without execution, but a number of closely-related technologies (emulation, sandboxing) use code
execution in a virtualized environment to analyse behaviour dynamically. Where this analysis uses
advanced heuristic analysis, the term active heuristics is sometimes used. Proactive analysis
techniques provide an effective method of addressing the common cybercriminal practice of using
packers and obfuscators to keep repackaging binaries so as to evade passive scanning techniques
(especially malware-specific scanning). Unfortunately, it is less effective where they expend
development resources on modifying instantiations of a malicious binary with the express intention
of evading the latest versions of targeted scanners using the latest released updates: however, that
particular problem is beyond the scope of this document.

Forensic Analysis and Execution Context

To understand the importance of execution context, it helps to know a little about malware
forensics. In principle, there are two main approaches to the analysis of malware: static analysis and
dynamic analysis.

Static analysis is based on the review of suspected code. While this is often most effective when
performed manually, it can be facilitated and automated using scripting to incorporate an
appropriate toolset. Conventional anti-malware can be seen as taking a similar but further-
developed approach, in that it is almost completely automated and consolidates the analytical tools
into the base package. It may search for known malware using a simple search-string or more
sophisticated algorithm, or it may check heuristically for malicious characteristics: either way, the
code is inspected passively, as opposed to by execution. This approach to detection is sometimes
referred to as passive scanning.

Static analysis which is restricted to identifying known malware is often associated with exact
identification or nearly (or near-) exact identification. However, static analysis is not restricted to
(near-)exact identification, signatures (variant-specific or generic), or other malware-specific
algorithms.

Dynamic analysis takes what is often a faster route to identifying malicious code, by observing its
behaviour when it is executed. For this reason, it is often seen as synonymous with behaviour
analysis, since if there is no execution, there is no behaviour to analyse. However, as previously
noted, while the term passive heuristics can also be used to describe code inspection using heuristic
analysis, it’s also possible to apply the technique to the predicted behaviour of unexecuted code
when actually executed: in other words, behaviour analysis does not necessarily involve either
active heuristics or dynamic analysis, since the behaviour of a program can, in principle, be
predicted by analysing its code without executing it.

Testing Methodologies
There are two primary categories of testing methodology: static testing and dynamic testing. (Three,
if you consider hybrid tests that use elements of both static and dynamic methodologies to be a
separate and primary category.)

Static Testing
One (so far unratified) definition of static testing can be summarized as the testing of products in a
context in which scanned code is not at any time in control of the target machine, while they are
being scanned. In principle, static testing according to this definition includes contexts where code
is executed but has no control over host machine, as happens where a scanner uses emulation or a
similar technology to allow the suspected malware to execute in a (hopefully) safe environment
with no direct communication with the real processor. Whether this definition can be strictly
applied during a particular test is a question specific to the implementation of both the product
under test and the details of the methodology, since these have a direct bearing on the execution
status of both the scanner and the scanned program. Even if a scanner is able to execute the scanned
object in isolation from the real processor, products using a more dynamic approach (in a formal
sense) to analysis may be disadvantaged in a comparative test.

Static testing has significant advantages for the tester, depending on implementation. On-demand
scanning, which is usually regarded as static, is comparatively easy to set up and automate, even

with large test sets, compared to dynamic testing. However, if the factors discussed in this paper are
not taken into account, it can be wildly inaccurate in its assessment of some kinds of product.

Dynamic Testing
Dynamic testing is defined by the Anti-Malware Testing Standards Organization as tests where a
PC is exposed to a live threat (for example, by attempting to execute the malware) as part of the
test.” (AMTSO, 2008) By this definition, dynamic testing is considered to be a more effective test
of “product efficacy” as it “directly mimics malware executing on a victim’s machine”.

Unfortunately, this definition does not constitute a direct antithesis to the definition of static testing
above, since that definition also allows for execution of the scanned program, though only in a
restricted or virtualized environment. We must also question the assumption that testing by using
on-demand scanning is automatically definable as static testing, since that really depends on
whether on the unclear relationship between on-demand scanning and static/dynamic analysis. If
static testing includes restricted execution of scanned code, is it really the opposite to dynamic
analysis?

At the time of writing, AMTSO has not ratified a guidelines document on static testing or a formal
definitions document: when it does so, we must hope that the organization finds a satisfactory way
to resolve this anomaly.

The same source (AMTSO, 2008a) argues that “dynamic testing is the only way to test some
anti‐malware technologies”: this is true, for instance of tests that require a connection to the internet
(or a simulation thereof) in order to analyse a program’s behaviour on execution. It may be possible
to argue that it is “appropriate as a test methodology for all types of anti‐malware products.”
However, dynamic testing is generally complex and therefore time- and resource-intensive to
implement. It requires skill and technical knowledge to implement not only accurately, but safely.
This difficulty is, perhaps, reflected in the fact that dynamic testing is only just starting to gain
traction, 33 years after Cohen pointed out that it’s possible to predict the viral nature of a program
by its behavior (Jacob, Debar & Filiol, 2008). Of course, predicting malice (viral or non-replicative)
is a little harder.

Behavioural Testing
This term is not synonymous with dynamic testing, although dynamic testing is usually
implemented as a means of analysing behaviour. However, as previously discussed, it is often
possible and practical to predict behaviour without dynamic analysis, that is, by passive code
review.

Some Specific Problems
There seems to be no end to the diverse and inventive approaches used by aspirant testers to evade
good practice as the anti-malware would like to see it put into effect. Here are a few of the most
commonly found.

VirusTotal is the best known example of a site that many people find very useful as a shortcut to
checking a possibly malicious file (as well as submitting it to multiple vendors), but it’s often
misused as (a) a means of monitoring vendor awareness of a specific threat (b) a quick and easy
substitute for a comparative detection performance test. VirusTotal passes files submitted by a
visitor to the site to a battery of command-line scanners. This gives the visitor a good chance of
identifying a known malicious program, but the fact that no scanner identifies a file as malware

does not mean it isn’t malicious, obviously. However, if a file is identified as malicious by one
group of scanners but not another, it doesn’t necessarily mean that the second group is less
competent at detection, either. Scanners that use sophisticated behaviour analysis, active heuristics
and so on can be disadvantaged by misuse of such facilities for a purpose for which they were never
designed or intended. Some = sites use VirusTotal submissions as a substitute for hands-on
comparative testing, while security researchers outside the antimalware research community
commonly use it as a tool to track the ability of the industry as a whole to detect a specific threat.
The assumption that VT reports should, over time, get nearer to 100% vendor detection on one
specific sample is based on a 1990s view of anti-malware as being primarily signature-based. There
is, in fact, no absolute reason why a product that has effective heuristic or behavioural detection
(which sites like VirusTotal doesn't necessarily measure) should "update" it to malware-specific
detection when a sample is available. Such an update may happen, for example as a sop to the
popular belief that detection has to be based on the principle that each instantiation of malware
requires not only a unique detection but a unique name (Harley & Bureau, 2008): whether or not it
does is not, however, a fair assessment of product capability. It's actually rather similar to "Time to
Update" testing, which has declined as testers have realized that it penalizes products that use
proactive detection techniques.

Virus Total is not really suitable for use for comparative testing,either: it is not a test site, and uses
command-line scanners. As Hispasec Sistemas, the company who developed and maintain Virus
Total, have suggest (Quintero, 2007), the use of the site for comparative analysis is based on at least
two major misconceptions.

• The assumption that command-line scanners will work in the same way as desktop versions
on a platform where fully GUI antimalware is the norm. Command-line scanners are more
likely to be server-hosted nowadays, which makes servers a natural home for a range of test-
related functions such as automated scanning of large, multiple test sets. Generally,
command-line scanners inspect the code passively, rather than running it in a safe
environment to see what it does in practice, so products that are heavily dependent on static
analysis in the form of signature detection may seem to do better than products that make
more use of proactive technologies than painstaking generation of signatures. In the real
world, however, where on-access scanning is the first line of defense for most people, the
advantage may swing the other way.

• The assumption that desktop and perimeter solutions, both of which are used by VirusTotal,
can be accurately assessed for detection performance using the same testing environment. In
fact, according to the product, platform and operating environment, both detection
mechanisms and default settings may vary widely. For instance, perimeter products are
likelier to make use of aggressive heuristics and be more tolerant of false positives. Some
products use detections that are so generic that they amount to the detection of a class of
executable rather than a class of malware, using such classifications as “suspicious”. These
are not necessarily false positives in any technical sense: for example, they are often based
on the fact that a file has been compressed, packed or otherwise modified using a run-time
packer, or packaged in some obfuscated form.

Malware distributors often use passworded archives and run-time packers to obfuscate known
malicious code in order to slip it past security software that would recognize the unobfuscated code.
However, legitimate programs may also be packed, for a variety of reasons (compression, Digital
Rights Management and so on), and it’s not unknown for legitimate programs to use packers
associated with malware packing. Some products use the detected presence of packers and

obfuscators as a heuristic indicator in its own right, an approach analogous to the common practice
of blocking all executable files when encountered as an email attachment. It’s a perfectly rational
approach, as long as the potential customer (often the tester’s main audience) is aware that they’re
making a trade-off: they’ll be protected from all malware that has a blacklisted characteristic, but
they’ll lose access to those innocent files that have the same characteristic. Many modern scanners
include detection algorithms based on combinations of packer detection, behavior analysis and
known malware detection. However, such detections are not necessarily triggered by command-line
scanning, depending on product and execution context, among other factors.

Old malware (known malcode for which the base code hasn’t changed) using a new packer
combination may not be detected until it actually attempts to execute: once it’s unpacked (in an
emulated or real environment) an on-access scanner can recognize it where the on-demand
component of the same product on a different system may not.

Cross-platform Testing
It’s important to a potential corporate customer in a mixed environment (where Apple, Linux and/or
Unix, Netware and Windows desktop and server systems may all be use) to know how well the
whole computing environment is protected by a product or product suite.

Heterogeneous Malware Transmission (formerly Heterogeneous Virus Transmission) describes the
transmission of malware via an environment (operating environment, execution context) in which it
is not capable of self-replicating (or executing at all), but can be transmitted passively. For example,
an application which is only capable of executing in a Windows environment can be transmitted via
another environment in which it can’t execute (or can only execute using some form of Windows
emulation). The original term was coined (Radatti, 1996) with reference to PC viruses transmitted
via UNIX systems, and later extended to refer to PC malware transmitted by Mac systems).

There is a wide variation in the way that anti-malware products handle cross-platform threats, not
only between competing products, but between different components of a single vendor’s product
range. For example, some Windows-specific desktop products do not detect Macintosh-specific
malware and vice versa, whereas gateway products are more likely to range threats associated with
a range of platforms, not just those specific to the gateway host environment. Of course, it’s entirely
reasonable for a reviewer to draw attention to these details of implementation, but the review
audience may be misled if a tester is unaware of differences in architectural and infrastructural
design, and doesn’t take them into account when establishing a test methodology.

Execution context is highly relevant here: a Windows scanner may well employ one of the
techniques previously described to execute PC-specific malware in a safe, virtualized environment,
but it can’t necessarily extend that technique to other system architectures. Testing meant to meet
the needs of an audience used to a multi-platform environment has to cover the differing design
parameters applied at different loci in a complex environment.

Security Suite Testing
It’s becoming ever rarer to see mainstream protective software that focuses on a single range of
malware (even viruses), or a single defensive layer (malware blacklisting). Increasingly,
antimalware vendors, aware that antivirus software alone is insufficient protection in these
dangerous times, are making available security suites including a range of tools such as anti-spam
tools, Host Intrusion Prevention Systems (HIPS) and personal firewalls, in order to enable
consumers to take advantage of defensive multi-layering.

This phenomenon has attracted the attention of testers whose experience is in security fields other
than anti-malware, who may not take into account the fact that vendors whose origins lie in
antivirus do not always implement these complementary technologies in the same way as more
“traditional” vendors. While there are many instances of such a collision of mindsets, we’ll focus
here on a single representative issue drawn from firewall testing.

There is a wide range of ways in which a firewall’s ability to block both external and internal
attacks. The latter issue is sometimes addressed using a technique called leak testing, which
assesses the firewall’s ability to prevent applications from transferring potentially sensitive data to
an attacker. Firewall testers use specialized tools to simulate this behavior, but this is in sharp
contrast to traditional practice in the AV industry, where some products have declined to treat
simulated malware in the same way as real malware by detecting and blocking it (Gordon, 1995).
Even the EICAR test file, which is generally prevented from executing by anti-malware, is not
usually flagged as if it was real malware. However, in at least one instance, flagging leak test tools
in the same way as the EICAR file is flagged would not meet the case, since detection of the
application rather than the behavior (in this case the simulated “leak”) is likely to be regarded as
gaming the system.

In this case, the main issue is a conflict between the expectations of testers from outside the
antimalware industry, and the impact of historical and ethical considerations within the antimalware
community on design decisions. However, execution context still plays a part, as does the intent
behind the pseudo-malicious program. Similar (but by no means identical) considerations may
apply with regard to other forms of simulated testing (Wismer, 2006).

Conclusion
While to some extent this paper focuses on the technical aspects of anti-malware testing and
execution context, the problems touched on here go much further than a simple matter of getting the
definitions right. Most of us in and around the antimalware industry live in a world where myth and
misunderstanding inform the perceptions of most people of what good testing practice is or should
be. In the past, the antimalware industry has not helped itself by maintaining that “if you don’t
know what good practice in testing is, you aren’t qualified to test”, without actually helping either
aspiring testers or their audiences to understand why so much past (Solomon, 1993) and current
testing (Harley, 2008) is inadequate.

Hopefully, the attempts by AMTSO (AMTSO 2008b) to begin to establish testing standards, and
the anticipated parallel initiatives from EICAR (Hayter, 2008) will start to break down the
psychosocial barriers to popular acceptance of the need for more rigorous testing practices, with a
better understanding of the principles of testing and the specialized technology behind both
malware and antimalware.

http://www.amtso.org/

References
Lee, A., & Harley, D. (2007a). Antimalware Evaluation and Testing. In D. Harley (Ed.), AVIEN
Malware Defense Guide for the Enterprise (pp. 441-498): Syngress.

Harley, D., Slade, R., & Gattiker, U. (2001). Viruses Revealed: Osborne.

Harley, D. (2008). Untangling the Wheat from the Chaff in Comparative Anti-Virus Reviews.
Retrieved 20th January 2009, from http://www.smallblue-
greenworld.co.uk/AV_comparative_guide.pdf

Harley, D. & Lee, A. (2007b). Testing, testing: Anti-Malware Evaluation for the Enterprise. In
AVAR 2007 Conference Proceedings: AVAR.

AMTSO (2009). Testing & Execution Context: Accurate Testing of Anti-Malware Detection. In
preparation.

Morgenstern, M., & Marx, A. (2007). Testing of “Dynamic Detection”. In AVAR 2007 Conference
Proceedings: AVAR

Gordon, S. (1997). What is Wild?" Retrieved 19th January, 2009, from
http://csrc.nist.gov/nissc/1997/proceedings/177.pdf

WildList (2001). Retrieved 19th January, 2009, from http://www.wildlist.org/faq.htm

Jacob, G., Filiol, E., and Debar H. (2008). Functional Polymorphic Engines: Formalisation,
Implementation and Use Cases. In 17th EICAR Annual Conference Proceedings: EICAR.

Szor, P. (2005). The Art of Computer Virus Research and Defense: Addison-Wesley.

AMTSO (2008a). Best Practices for Dynamic Testing. Retrieved 19th January, 2009, from
http://www.amtso.org/documents/doc_download/7-amtso-best-practices-for-dynamic-testing.html

Harley, D., and Bureau, P. (2008). A Dose by any other Name. In Virus Bulletin 2008 Conference
Proceedings: Virus Bulletin.

Quintero, B. (2007). AV Comparative Analyses, Marketing, and VirusTotal: A Bad Combination.
Retrieved 19th January, 2009, from http://blog.hispasec.com/virustotal/22

Radatti, P. (1996). Heterogeneous Computer Viruses in a Networked UNIX Environment.
Retrieved 19th January, 2009, from http://www.radatti.com/published_work/details.php?id=32

Harley, D. (1997). Macs and Macros: the State of the Macintosh Nation. In Virus Bulletin 1997
Conference Proceedings: Virus Bulletin.

Gordon, S. (1995). Are Good Virus Simulators Still a Bad Idea? Retrieved 19th January, 2009, from
http://www.research.ibm.com/antivirus/SciPapers/Gordon/Simulators.html

Wismer, K. (2006). Are good spyware simulators still bad. Retrieved 19th January, 2009, from
http://anti-virus-rants.blogspot.com/2006/03/are-good-spyware-simulators-still-bad.html)

 AMTSO Principles

AMTSO Glossary [in preparation]

Solomon, A. 1993). A reader’s guide to reviews. Retrieved 19th January, 2009, from
http://www.softpanorama.org/Malware/Reprints/virus_reviews.html.

http://csrc.nist.gov/nissc/1997/proceedings/177.pdf
http://www.wildlist.org/faq.htm
http://blog.hispasec.com/virustotal/22
http://www.radatti.com/published_work/details.php?id=32
http://www.research.ibm.com/antivirus/SciPapers/Gordon/Simulators.html
http://anti-virus-rants.blogspot.com/2006/03/are-good-spyware-simulators-still-bad.html
http://www.softpanorama.org/Malware/Reprints/virus_reviews.html

AMTSO (2008b). The Fundamental Principles of Testing. Retrieved 19th January, 2009, from
http://www.amtso.org/documents/cat_view/13-amtso-principles-and-guidelines.html

Hayter, A. (2008). Report from the 17
th

EICAR Annual Conference May 4-6, 2008 Laval, France.
Retrieved 19th January, 2009, from http://www.aavar.org/'08%20eicar%20report%202.html

Jacob, G., Debar, H., & Filiol E. Behavioral detection of malware: from a survey towards an
established taxonomy. In Journal of Computer Virology (2008) 4:251-266.

http://www.amtso.org/documents/cat_view/13-amtso-principles-and-guidelines.html
http://www.aavar.org/'08%20eicar%20report%202.html

	About Author
	Keywords

	Execution Context in Anti-Malware Testing
	Abstract
	Introduction
	It’s common to think of product evaluation purely in terms of detection performance: after all, detection and removal (or blocking before infection) are usually considered to be the most important functionalities of an anti-malware package. However, i...
	• Ergonomics and usability
	• Configurability
	• Documentation
	Support
	• Functional range
	• Performance (speed of operation, impact on system resources, and so on)
	As a matter of fact, this realignment of priorities could be defended quite vigorously, given the difficulties of detection performance evaluation in the current threat landscape, where 100% detection of known and unknown malware has become virtually ...
	Testing and Over-Abundance
	The Execution Context Problem

	Discussion
	Evaluation Based on Detection Performance
	Single/Multi-Function Detection Testing versus Whole Product Evaluation
	Defining Execution Context
	On-Demand versus On-Access

	Execution Status
	Basic Detection Algorithms
	(Near-)Exact Identification
	Signature
	Playing First: Proactive Analysis

	Forensic Analysis and Execution Context
	To understand the importance of execution context, it helps to know a little about malware forensics. In principle, there are two main approaches to the analysis of malware: static analysis and dynamic analysis.
	Static analysis is based on the review of suspected code. While this is often most effective when performed manually, it can be facilitated and automated using scripting to incorporate an appropriate toolset. Conventional anti-malware can be seen as t...

	Testing Methodologies
	Static Testing
	Dynamic Testing
	Behavioural Testing

	Some Specific Problems
	Cross-platform Testing
	Security Suite Testing

	Conclusion
	References

